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PROPAGATION OF AN ELLIPTICAL LASER BEAM THROUGH THE 
TURBULENT ATMOSPHERE (VERTICAL BEAMS)

ABSTRACT

We calculate the effect of a turbulence gradient on the mean irradiance 
profile of an elliptical beam. We conclude that in a turbulent atmosphere the 
peak irradiance can be shifted to a point further from the ground. Also, the 
vertical symmetry of the beam can be perturbed because of greater horizontal 
beam spreading at lower heights where turbulence is stronger. However, this 
effect is significant only for highly elliptical beams, and only when the horizon­
tal beam divergence is determined by turbulence.

1. INTRODUCTION

The qualitative effects of atmospheric turbulence on the propagation of a laser beam 
can be described quite simply. Larger eddies (i.e., those larger than the beam diameter) 
cause the beam to wander in a random fashion, while smaller eddies cause it to break up 
and spread. Taken together, these two effects cause the mean irradiance near the center 
of the beam to be reduced. At the same time, the mean irradiance near the beam edge is 
enhanced as energy is scattered out from the center.

A quantitative description of this effect is more difficult. It depends on the beam 
geometry as well as the details of the turbulence. In this chapter, we derive an expression 
for the mean irradiance of an elliptical Gaussian laser beam after propagation through 
turbulence whose strength has an arbitrary power-law dependence on height. Over flat, 
but not necessarily level, terrain, the expression requires a single numerical integral. 
Rough terrain can be accommodated by a second numerical integral.

2. ANALYSIS

We use the extended Huygens-Fresnel principle (Lutomirski and Yura, 1971), to 
describe the effects of atmospheric turbulence on a propagating optical wave. The scalar 
optical field U at a transverse point g along a slant path of length z, as shown in Fig. 1, is 
given by

/ d2Q5U0(gsyJk(Q-Qs)2/(2z)ptJJ(Qs,Q,z) (1)

where k = 2n/X, X is the optical wavelength, Utt(gs) is the source field at a transverse point 
gs in the transmitting plane, and t/’(gs,g,z) = %(gs, g, z) + iS(gs> g, z) is the sum of the log- 
amplitude and phase perturbations (Tatarskii, 1971), suffered by a spherical wave field
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Figure 1. Propagation geometry for a slant path of length z at an angle 0 
relative to the horizontal over irregular terrain described by a height profile

emitted at (gs, 0) and observed at (p, z). The mean intensity of the optical field is given 
by

<Hg, z)> = [JLjf jd2gsd2Q/U0(Qs)U;(6/)eik^s-^/^

X €~'kQ'{Qs-Qs')/z < eip(Qs,Q,z)+V(es',Q,z) > (2)

where the angle brackets describe an ensemble average, and the asterisk identifies a 
complex conjugate. The quantity in angle brackets on the right hand side of Eq. (2) is the 
two-point spherical-wave mutual coherence function. It can be evaluated by assuming the 
x/> terms are jointly Gaussian random variables and the turbulence is homogeneous, which 
leads to (Lee et al., 1977)

< . e~ ^Dt'(es-Qs’>z), (3)
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where Dy is the wave structure function defined by (Yura, 1972)

Z

DyiQs - o/, z) = 4nk2 J dz' J d2K<\\(K, z')
o

x {l _e'[i-07_ (4)

The first integral in this expression describes an integration along the propagation path z', 
and the second an integration over the transverse wavenumbers K of the intervening 
refractive index field described by the three-dimensional, path-dependent refractive index 
spectrum z'). For uniform isotropic turbulence and a Kolmogorov refractive index 
spectrum (Tatarskii, 1971),

<!>„(£, z‘) = <!>„(£) = 0.033C^r1 '/3 , 2jt/L„ « K « 2n/?0 , (5)

where f.0 and La are the inner and outer scales of turbulence, respectively, and Cl is the 
refractive index structure parameter, Eq. (4) reduces to

i&-g/iY/3
D^Qs-Qs',2) = 2\ do « |g5-g/| « U (6)

where o() = (0.545k2zCl)~3d5 is the spherical wave coherence length (Clifford and Lataitis, 
1985). The parameter g0 describes the transverse distance over which a spherical wave 
field decorrelates due to turbulence. Equations (2), (3), and (6) can be used to calculate 
the irradiance profile of an optical beam after propagation through uniform, homogene­
ous, isotropic turbulence.

The assumption of uniform turbulence may not be reasonable for wider beams and 
longer paths. Variations of Cl transverse to the beam and along the path can be accounted 
for by a more careful definition of the wave structure function. In general, the second-or­
der wave structure function is defined by

£y/(g.5, Qs’,Q, q’,z) =< \rl>(gs,Q,z) - f(gs', o',z)\2 > , (7)

where ij>(gs,g,z) and xj>(gs',g',z) are the complex phase perturbations experienced by a 
spherical wave propagating along the two ray paths shown in Fig. 2. For uniform, homo-
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Figure 2. Propagation geometry for the two-source, two-receiver wave struc­
ture function calculation. The parameter A_ describes the ray separation 
and A+ the transverse location of the mean ray path (dashed line) at a path 
position z\

geneous, isotropic turbulence, Eqs. (4) and (5) can be used to express the wave structure 
function as

Dy,(gs - Qs', Q - e'iz) = / dz'dy,(A-) , (8a)
0

where A_ = |(1 - (z'/z))(qs - qs') + (p - q')z'/z\ is the separation of the two ray paths at z' 
and

cfv,(A_) = 8zr2(0.033)A'2C2 | dK r8/3[l - 7„(^A_)J (8b)
o

describes the local contribution (Flatte, 1979), to Dy, at a range z'. Here J0 is the zero 
order Besel function of the first kind. Equation (8b) can be extended to include non- 
uniform turbulence by allowing C2 in dy> to vary with the mean position of the two rays 
(Tatarskii, 1971), described by the center-of-mass coordinate

yjuw/) ^ (£ + £')

2 + 2 ’

and with z'. Equation (8a) need only be modified by replacing dy,(A_) with
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00

(9)dt/'(&+, A_,z') = 8?r2(0.033)A:2C2(A+,z') J rfAA'-8/3[1 -/0(A'A_)1 .
0

The integration over K in Eq. (9) can be easily evaluated to give, in analogy to Eq. (6),

• 5, - U,', e, z) - 2^0.545*2z|ft - f,'| V3,^£l±£il, rjjl, (10a)

where

= |/du( 1 - t/)5/3C2(A+, u) ,
(10 b)

u = z'/z is the normalized path position with u = 0 describing the location of the transmit­
ter and u = 1 the receiver, and A+ = (1 - u)(gs + g/)/2 + ug. Equation (6) is recovered if Cl 
is constant. Equations (2), (3), and (10) represent a general formulation for the irradiance 
profile of an optical beam after propagating through nonuniform turbulence.

To proceed further, we need to specify the functional form of C2„ in Eq. (10b). We 
do this by decomposing the argument A+ of C2 into its horizontal A+x and vertical Afv 
components and considering the following separable form for C2:

C2n(A+, u) = C2Ji(A+y, u)f2(A+x, u) , (11)

where C21{) is some reference C2„ value and the functions f2 and/, describe the variation of 
Cl in the horizontal and vertical directions, respectively, at a path position u. We assume, 
for now, that the propagation axis is horizontal (i.e., 0 = 0). The change in C2n with 
altitude a in the surface layer over flat ground is best described by a power law; -2/3 at 
night and -4/3 during the day (Clifford, 1978). In mountainous regions, a -1/3 depend­
ence may be more nearly correct day or night (Belen’kiy et al., 1986). For the sake of 
generality, we leave the particular power law dependence n unspecified and let f\(a.u) = 
(a///)“"; therefore /,(A+ v, u) = (|ltz(u) + A+v|where h is the height of the source above 
the ground, and hz(u) describes the height profile along the propagation axis as a function 
of the normalized path position u. We assume that /2(0,0) = 1, so C/„ is the on-axis C2-, 
value at the transmitter. The corresponding variation in Cl with the horizontal coordinate 
is then described by f2(x,u) = \lrx(x,u)/hx(0, u)\~n, and therefore

/z(A + X') it) = |/C(A u)/hx(0,u)]~n ,
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where hz(x,u) describes the terrain profile transverse to the propagation axis at u and 
/r,(0.//) = hz(u). The effect of nonuniform heating of the ground due to irregular ground 
cover or shading, which produces different initial C2 values at the ground, can be ac­
counted for by multiplying the right side of Eq. (11) by an additional factor g(x,u) = 
g(A+x,u). This function can be used to scale the C2 values at the ground relative to the C2 
value just below the transmitter. We note that g(0,0) = 1. To generalize this discussion to 
a slant path at an angle # relative to the horizontal, we need only use the rotational 
coordinate transformation

A+,v -» A+JC, A+y -* A+v cos# + zu sin#, and z' = zu -* - A+v tan# + zu 

with the terrain profile defined as in Fig. 1.

We consider the specific case of a slant path over uniformly heated flat ground |i.e., 
hiA+Jr, u) = g(A+*, «/) = !] for which

c;<a., h) . c;„(j tA,yC0S"+z"sin j'". 02)

Substituting this result into Eqs. (10), Eqs. (10) into Eq. (3), and Eq. (3) into Eq. (2), we 
obtain

I(x,y,z) = dxs dys dxs' dys' U0(xs,yM(xs',ys')

X e<k{x]-xs'2)/(2z) gik(y2-ys'2)/(2z) 

x e~ikx(xs-xs')/z e~iky(ys-ys')/z

x exp|(- \/(.r,-x,')2 + (y5-y/)2Y/3
#0

(,3a)

where we have expressed the vectors qs and qs' in terms of their (horizontal, vertical) 
components (xs,ys) and (xs',ys'), respectively, and

f Vs + y.s' ^ 8 j-«.(—oj = -j du( 1 -</)5/3( 1 +

j^( 1 - u) — + wyjcos 0 + zu sin# \ 11

(13b)

The coherence length o0 in Eq. (13a) corresponds to the C2 level at the transmitter. We 
note that if n = 0 ( i.e., if C2 is constant) a0 = 1. Equation (13b) can be evaluated in terms
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of special functions (Gradshteyn and Ryzhik, 1980), if we write it in the more suggestive 
form

du{ 1 - i/)5/3(y + du) " (14a)

(14b)

r\F\ n, 1; (14c)

where y - 1 + (v.t + >'/) cos 0/(2h), d = h 1 {(z sin#+|2y-(y^ + y/)] cos#/2}, B is the beta 
function, and 2F\ is the hypergeometric function.

To evaluate Eq. (13a) we also need to specify the source field distribution U0(xs, ys). 
The actual distribution will have a truncated Gaussian form

U()(xs, ys) —
vT? + Vs ^ j (15a)

M+tf >y , (15b)

where Ua is the field strength at the center of the aperture, d is the standard deviation of 
the Gaussian amplitude distribution, Fx and Fy are the horizontal and vertical focal lengths 
respectively, and D is the aperture diameter. This, however, makes the computation nu­
merically intensive, and we replace it with the more tractable Gaussian form with an 
intensity decay at Jx] +y? = D/2:

t/„(v„ y,) - U„exp[- 2,;^ + -£)] e.xp[- 2y?(± ♦|-)] .
(16)

which, when substituted into Eq. (13a) under the coordinate transformation

£.v = xs - xs', 2t]x = xs + xs', iy = ys - y/, and 2//v = ys + v/

yields
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I(x, y, z) = \J~\ 7° //// d%x d'1* d%y dlh

- 00

X £~(4,7,Y+£.x>/t,2g~(4'?y+£y)/£>2 

X gik^y\r!yO-z/Fy'>-y\/z

x e-[(^+?y)/6’ol5/6«o(7y.y) (17)

Equation (17) can be somewhat simplified by evaluating the i]x integral; however, the 
remaining three integrals remain analytically intractable. To obtain a simpler result, we 
use the quadratic structure function approximation (Wandzura, 1980), which replaces the 
5/3 exponent in Eq. (6) by 2, or equivalently raises the exponent of the last term in Eq. 
(17) to the 6/5 power. The impact of this approximation is that it implies that the only 
effect of turbulence is a random tilt of the propagating wave at each path position. This is 
a reasonable approximation for the mean intensity calculation and allows us to evaluate 
the and £y integrals, resulting in

l(Xiy,z)>=£!j¥± | dq, AB

x e-{kDB[tiy(\-z/Fy)-y]/(2z)}2 , (18a)

where

. k2D4f zV D2 fi/s'H/zA-^v,y) = |_1+w^1--J+^«0 j , (18b)

B = B{th,y) = \l+~al/5V/2 , 
L (?o J

(18c)

and

[
11, m~\-n P \\ 2 si

1 +-^cos<9 2F| n, 1; —;------
sin 9 + (y - ;/y) cos 0

(h + )}y cos 9) ] (18d)

In performing the integral in the ^-dimension, turbulence levels were implicitly as­
sumed to be constant along a line perpendicular to the beam and parallel to the ground.
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The expressions should still be fairly good if this condition is not satisfied (due to uneven 
terrain in this direction, for example) as long as the variation across the beam is not too 
large. In this case, one must decide what value to use in the calculation. Two obvious 
choices are the value at the center of the beam and the value along the line of sight to the 
observation point. Because scattering by turbulence tends to produce very small scattering 
angles, we expect the irradiance at a point to be largely determined by turbulence along 
the line of sight to that point. We therefore favor using the value along the line of sight 
for most calculations. In the y-dimension integral, the turbulence may be changing very 
rapidly, and therefore the constant turbulence assumption was not used.

3. EXAMPLES

To illustrate the magnitude of these effects, a typical laser system was considered 
under strong turbulence conditions. The laser was assumed to produce 1 Wni~2 at the 
center of the transmitted beam. The wavelength is near the center of the visible region of 
the spectrum at 500 nm. A 10-cm-diameter transmitter was used. It was located 2 m 
above the ground and pointed at a 15 mrad elevation angle. A range of 2 km was as­
sumed. (These parameters are meant to be typical of a generic laser system and should 
not be taken as indicative of any particular system design.) A daytime turbulence profile 
over flat, level terrain was assumed to provide the steepest gradient of turbulence. At the 
transmitter, a fairly strong value of C2 of 10"12m'2/3 was used.

Figure 3 is a vertical profile of the irradiance through the center of the beam for a 
collimated transmitter. The solid line represents a case with no turbulence. In this case, 
the beam at 2 km is almost identical to the transmitted beam, with an irradiance of 
1 Wm"2 at the center and an e~x radius of 5 cm. It is, of course, circularly symmetric. The 
dashed line in the figure includes the effects of turbulence. For the narrow beam consid­
ered here, the effect of turbulence is to spread the beam by the same amount in all 
directions. The resulting beam width is 21 cm and the on-axis irradiance is 56 m Wni"2.

In the PHI propagation model used by the U.S. Army’s Atmospheric Sciences Labo­
ratory, the turbulence-induced beam spread is calculated from

(Itt = 0.6A/ro , (19)

where the Fried coherence length (Fried, 1967), is given by

'o
5/31-V5[,.45*^4-if]

(20)

For the irradiance profile of Fig. 3, r0 is 3.8 mm. Adding the turbulence-induced beam 
spread to the transmitted beam size produces an e'1 beam radius of 21 cm, and the PHI 
code is seen to work very well for narrow circular beams.
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Irradiance (W/nrr)
Figure 3. Vertical profiles of irradiance through the center of a collimated 
beam 2 km from the transmitter for no turbulence (solid line) and strong 
daytime turbulence (dashed line).

Figure 4 is a plot of the vertical profile of irradiance for a broad fan beam. In this 
case, the beam was diverged 30 //rad in the vertical and 12 mrad in the horizontal. The 
turbulence case and the no turbulence case are identical. This seems reasonable since the 
turbulence-induced beam spread from Eq. (19) is only about 80 //rad.

Figure 5 represents the highly elliptical case of a beam diverged 30 mrad in the 
vertical, but not at all in the horizontal. With no turbulence, the peak irradiance is 
1.7 m Wm~2 and the vertical beam width is 30 m. In the presence of turbulence, the peak 
irradiance is 0.41 mWm-2, and it is shifted to a position 5 m higher than the peak in the 
no-turbulence case. This shift is due to the greater horizontal spreading of the beam at 
lower elevation angles where the turbulence is greater. For the same reason, the distance 
from the peak to the c"1 irradiance point is also asymmetric. Below the center of the 
beam, this distance is 27 m and above the center it is 29 m.

In the case of a narrow circular beam, turbulence spreads the laser energy out in 
two dimensions, and the irradiance is reduced by the square of the ratio of the spot size 
without turbulence to the spot size with turbulence. For a diverged beam, this ratio is
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Irradiance (/iW/m2)

Figure 4. Vertical profile of irradiance 
through the center of an elliptical beam 2 
km from the transmitter. No-turbulence 
and strong-daytime-turbulence cases are 
indistinguishable.

Irradiance (mW/m2)

Figure 5. Vertical profiles of irradiance* 
through the center of a highly elliptical 
beam 2 km from the transmitter for no 
turbulence (solid line) and strong daytime 
turbulence (dashed line).

unity, and turbulence has no effect. For a beam that is narrow in horizontal dimension but 
broad in vertical dimension, turbulence should spread the laser energy out in only one 
dimension, and the irradiance is reduced by the width of the beam without turbulence 
divided by the width of the beam in the presence of turbulence. If turbulence is not 
uniform vertically, that ratio will be a function of height.

Figure 6 is a profile of the highly elliptical beam case with the turbulence effects 
calculated three ways. The solid line represents the exact theory and is reproduced from 
the dashed line in Fig. 5. The long dashed line was calculated using a single value of the 
Fried coherence length. This is the calculation used by the current PHI code. Even though 
this is an extremely elliptical beam, the single-coherence-length calculation is generally 
within a factor of 2 of the correct result except very close to the ground. For less elliptical 
beams, the agreement will be better. The short-dashed line was made using a beam- 
spread calculation based on a coherence length computed at each height. This results in a 
very good approximation to the correct values at all heights.
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Irradiance (mW/m )
Figure 6. Vertical profile of irradiance through the center of a highly ellipti­
cal beam in strong daytime turbulence: exact calculation (solid line), calcu­
lation using r0 at beam center (long-dashed line), and calculation using r0 at 
each height (short-dashed line).

4. CONCLUSIONS

For a highly elliptical laser beam, a gradient in turbulence strength can shift the 
peak irradiance to a greater height in the atmosphere than the peak is in the absence of 
turbulence. This is due to greater horizontal beam spreading at the lower heights where 
turbulence is greater. However, this effect is significant only for highly elliptical beams 
(ellipticities of the order of 100 or greater) and only when the turbulence-induced horizon­
tal beam divergence is greater than the intentional divergence or the diffraction induced 
divergence if there is no intentional horizontal divergence.

Under these conditions, the effect can be adequately modeled by calculating the 
Fried coherence length at each height and using that to find the horizontal divergence at 
each height. The vertical divergence will generally be negligible for such a highly elliptical 
beam. A more sophisticated model is probably not necessary since the magnitude of the 
effect is generally small.
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